
EFFECTS OF SPATIAL VARIABILITY ON THE SCALING OF LAND
SURFACE PARAMETERIZATIONS

ZHENGLIN HU and SHAFIQUL ISLAM�

The Cincinnati Earth Systems Science Program, University of Cincinnati, OH 45221-0071, U.S.A.

(Received in final form 5 December, 1996)

Abstract. Understanding and modelling physical and dynamical processes over heterogeneous land
surfaces have become a central focus of many recent studies. There is a considerable debate, however,
over how to represent the effects of spatial heterogeneity in mesoscale and global scale models. Here,
a computationally efficient analytical approach is presented to evaluate scaling properties of land
surface representations. It is shown that the effects of spatial variability may not be negligible for
commonly encountered land surfaces and associated parameterizations. Second-order correction
terms involving variances of the parameters and covariances of each pair of land surface parameters
are developed to account for the effects of heterogeneity. Using this analytical approach, we show
that the detail of spatial heterogeneity may not be important for the infrared radiation and reflected
solar radiation from the surface, while sensible and latent heat fluxes are shown to be sensitive to
heterogeneity. Assumptions related to different parameterizations for the same physical process could
potentially lead to different inferences regarding the influence of spatial heterogeneity. The proposed
approach, however, is capable of identifying the role of different parameterizations in estimating the
influence of spatial heterogeneity. These analytical results are consistent with the results of several
recent numerical and field experiments that deal with the effects of small-scale heterogeneity in land
surface characteristics.

Key words: Surface heterogeneity, Scaling, Land-surface parameterization, Scale invariance, Aggre-
gation and disaggregation.

1. Introduction

It is now recognized that adequate representation of land surface processes is
important for the accurate description of regional and global climate. The land
surface is usually very heterogeneous at the size of typical mesoscale and climate
model grid blocks. This heterogeneity has not been fully represented in commonly
used mesoscale and climate models. As a result, characterization of small-scale
land surface heterogeneity in modelling the land-atmosphere system has become a
central focus of many recent studies. There is a considerable debate, however, over
the influence of subgrid scale land surface heterogeneity on the grid-scale response,
and over how to parameterize the effects of spatial heterogeneity in atmospheric
models.

In recent years, several approaches have been proposed to represent land sur-
face heterogeneity in mesoscale and climate models. One approach is to increase
the resolution of the model grid at the ground surface. Such an approach divides
the model grid into finer resolution subgrid elements and estimates the surface
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fluxes at the subgrid scale (e.g., Dickinson et al., 1989; Koster and Suarez, 1992).
Dickinson et al. (1989) used general circulation model (GCM) output to provide
the horizontal boundary conditions needed for a regional atmospheric model with
much higher temporal and spatial resolution (1.5 min; 60 � 60 km2). They found
that intragrid topography and land surface properties strongly influence the distrib-
ution of precipitation at the mesoscale, and that the nested GCM-mesoscale model
provides a more realistic representation of precipitation than the original GCM.
Koster and Suarez (1992) assumed that each subgrid element (hereafter, subgrid)
interacts with the atmosphere independently, with atmospheric forcings at the first
model level kept the same for all subgrids within a grid. For each subgrid, the land
surface model is applied to assess the surface temperature and humidity, and turbu-
lent fluxes to the atmosphere. The model responses at the grid level are calculated
by averaging over all subgrids within a grid block. The computational requirement
of running a mesoscale model (Dickinson et al., 1989), or land surface model for
each subgrid (Koster and Suarez, 1992), can be an order of magnitude larger than
that required to run the associated GCM. At present, the limitation imposed by the
availability of computer resources inhibits the practical utilization of this otherwise
promising approach (Gao and Sorooshian, 1994). Furthermore, this approach still
cannot resolve all subgrid-scale heterogeneity because the subgrid size is still much
larger than correlation scales of many land surface processes.

Another approach is to determine the effect of land surface heterogeneity on
the surface fluxes by using so called scale invariant land surface parameterizations.
A scale invariant parameterization uses grid level mean values of parameters, but
promises to provide a good estimate of grid level response or output. Sellers et
al. (1992) and Hall et al. (1992) claim that, based on the analysis of the FIFE
(First ISLSCP (International Satellite Land Surface Climatology Project) Field
Experiment) data, land-atmospheric models are almost scale invariant. However,
the relatively homogeneous FIFE site might hinder the generalization of this con-
clusion. Another scale invariant approach is to define the effective parameter values
at grid level, so that the land surface parameterizations, which were developed at a
local or point scale, are still valid at the grid scale. The effective value of a given
parameter must be determined for each application, and so is not unique (Lhomme
et al., 1994). For example, an effective surface temperature can be estimated from
the sensible heat flux parameterization. Another estimate of the effective surface
temperature can also be obtained from the surface longwave emission parameteri-
zation. Thus for a single parameter, different parameterizations can lead to different
effective parameter values.

Several studies have used the effective roughness length to account for the
effects of surface heterogeneity. To derive an effective roughness length for a
heterogeneous surface, Wieringa (1986) introduced the blending height concept
that has been intensively studied in the literature (e.g., Mason, 1988; Claussen,
1991; Blyth et al., 1993; Claussen, 1995a, b; von Salzen et al., 1996). The
blending height is a scale height for the heterogeneous surface, above which the
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atmospheric flow does not depend on the heterogeneous surface features. Thus, the
atmospheric properties above this height will be homogeneous and do not depend
on the specific horizontal locations. The blending height concept is quite useful in
the formulation of the effective roughness length for the estimation of surface fluxes
from heterogeneous surfaces. Mason (1988) provided an estimate of the blending
height based on the horizontal scale of the surface heterogeneity. Later, Claussen
(1990) extended Mason’s approach to the definition of effective drag coefficients
of momentum and passive admixtures, and Wood and Mason (1990) extended the
blending height concept into flux estimation in non-neutral conditions. The blend-
ing height concept has been incorporated in various numerical studies in regard to
the significance of the surface heterogeneity (Claussen, 1991; Blyth et al., 1993;
Claussen, 1995a, b; von Salzen, 1996; Grotzner et al., 1996). The concept of the
blending height is applicable when the scale of the surface heterogeneity is small
(a few kilometres) and the lower atmosphere is not unstable. As Grotzner et al.
(1996) argued, when the scale of the heterogeneity becomes larger and the lower
atmosphere is more unstable, the blending height will tend to be well above the
convective boundary layer. Then the similarity law for the flux estimation will not
be applicable using this blending height. A detailed review of the blending height
concept and its application to characterizing the effect of surface heterogeneity
may be found in Raupach and Finnigan (1995) and references therein.

In an attempt to minimize computational demand, the statistical-dynamical
approach is also used to represent subgrid-scale heterogeneity. A common approach
is to use the probability density functions to describe subgrid-scale spatial variabil-
ity of certain variables and derive probability density functions for an aggregated
response (Entekhabi and Eagleson, 1989; Famiglietti and Wood, 1991). Bonan et
al. (1993), Wood and Lakshmi (1993) and Li and Avissar (1994) demonstrated the
influence of the spatial heterogeneity of land surface characteristics on the surface
fluxes by using the statistical distributions for the land surface parameters. Bonan
et al. (1993) and Li and Avissar (1994) found that the heterogeneity of the land
surface is important to the grid level sensible and latent heat fluxes, whereas Wood
and Lakshmi (1993) found that the latent heat flux is not particularly sensitive
to the heterogeneity. In fact, Bonan et al. (1993), Wood and Lakshmi (1993) and
Li and Avissar (1994) used an approach similar to Koster and Suarez (1992), but
the parameter values were specified using statistical distributions. Thus, similar
computational demands are inherent in these statistical-dynamical approaches as
well. For example, Li and Avissar (1994) used a total of 5,580,900 steady state
simulations to conclude, in general, that the latent heat flux was the most sensitive,
while the radiative flux emitted by the surface was the least sensitive, to spatial
heterogeneity.

In this paper, we present an analytical approach to evaluate the scale-invariant
properties of different land surface parameterizations. This approach can also be
used to develop parameterizations that include effects of land surface heterogeneity.
In Section 2, we provide some definitions that have specific meanings in this paper.
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In Section 3, we present a systematic procedure to test the adequacy of scale
invariance in land surface modelling. Some applications of our methodology are
presented in Section 4, and concluding remarks are given in Section 5.

2. Definitions

A few terms used in this paper have a specific meaning, and we define them here. A
heterogeneous land surface within a grid square may be viewed as a collection of
land surface elements, called ‘subgrids’, ‘patches’, or ‘tiles’. In this paper, subgrid,
patch, and tile are used interchangeably; they represent a small area that can be
assumed to be homogeneous.

Map is a function, or model, or algorithm, or parameterization that takes a set
of parameters as input and produces an output (or response). For example, the
bulk transfer parameterization of sensible heat is a map. This map consists of a
representation of sensible heat flux that includes air density, transfer coefficient,
first model level wind velocity and temperature, and surface temperature as input
and produces the sensible heat flux from the surface as an output.

In a lumped model, the system is spatially averaged, or regarded as a single
point in space without dimensions. For example, many lumped models of the
rainfall-runoff process treat the precipitation input as uniform over the watershed
and ignore the internal spatial variation of watershed flow. On the other hand, the
distributed model considers hydrologic processes taking place at various points in
space and defines the model variables as a function of spatial dimensions.

Here, a lumped representation takes grid scale parameter values as input, and
produces a grid level output or response. The output from a lumped map is a grid
level output. By a lumped model, we mean that the grid is spatially homogeneous
with regard to its inputs, parameters, and outputs (Figure 1, right part).

A distributed map calculates the grid-level response by first dividing the grid
into a number of subgrids that can be assumed to be homogeneous. Then the
response of each subgrid is aggregated by a suitable kernel (e.g. areal weighted
average) to get the grid-level output. Thus, a distributed model accounts for the
spatial variability of inputs, parameters, and outputs within the grid. The estimation
of the grid-level response by a suitable kernel from each subgrid is referred to as
aggregation (Figure 1, left part).

A scale invariant land surface map means that the empirical relationship devel-
oped from point observations can be used for large areas (e.g., at the mesoscale or
GCM grid scale). A scale invariant map will produce a grid-scale response if we
use average parameters over the grid as input. For example, if we use grid average
values of albedo and surface temperature, a scale invariant reflected solar radiation
map will produce grid-level reflected solar radiation. Quasi-scale-invariant map
means that the resulting error from using a lumped map to estimate grid-level
response will be small.
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Figure 1. Scheme for aggregation and scaling in land surface modelling. The left part is for the
distributed model which assumes that the grid block is subdivided into many homogeneous subgrids
and the model is applied to each subgrid to get distributed model responses. Later, an aggregation
kernel is applied to these distributed responses to obtain the grid level output. On the other hand, in
the right part the distributed model inputs and parameters are aggregated first to get grid level inputs
and parameters, then the model is used to get the grid level estimate. If two estimates are equivalent,
the model is scale invariant.

3. Analysis of Scale Invariance: An Analytical Approach

An important problem in land surface modelling is the identification of relation-
ship(s) between point scale measurements and grid-level response. If a map is valid
for a point scale, can we use this map at the scale of a mesoscale or GCM grid
block? Under what condition is the map scale invariant? In order to answer these
questions, we begin our discussion with a map at the point scale. Then, we will
present two conditions regarding properties of the scale invariant map.
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Let f(P1; P2; : : : ; Pn) be the joint density function of parameter set
fP1; P2; : : : ; Png over a model grid (e.g., GCM grid), then the fractional area that
has the same set of parametersfP1; P2; : : : ; Png in the range off�P1;�P2; : : : ;�Png
will be

f(P1; P2; : : : ; Pn) ��P1�P2 � � ��Pn; (1)

where �P1, �P2; : : :, and �Pn are intervals of parameters. We assume here that
each parameter is discretized into Q equal intervals. This is equivalent to dividing
a GCM grid into Q patches, with fractional area corresponding to the frequency of
each interval as defined by (1).

Let the output from the map at a patch q be Gq; for the parameter set at the
patch q fP1; P2; : : : ; Pngq of a specific map, we have

Gq = map(fP1; P2; : : : ; Pngq): (2)

Then the grid scale output will be

Gd =

QX
q=1

map(fP1; P2; : : : ; Pngq) � f(fP1; P2; : : : ; Pngq)

��P1 �P2; : : : ;�Pn: (3)

The subscript “d” indicates that the grid-scale output is aggregated from the output
of a distributed model. Taking the limit to the above equation with respect to Q
(this is equivalent to dividing the GCM grid block into finer subgrids), we have

Gd =

Z Z
� � �

Z
map(P1; P2; : : : ; Pn) � f(P1; P2; : : : ; Pn)

�dP1 dP2 � � � dPn: (4)

This is a generalized formulation for the estimation of grid-level quantities by
taking subgrid-scale heterogeneity into account. Recent studies have addressed the
influence of subgrid-scale heterogeneity on the grid-scale response by using a prob-
abilistic framework. For example, by assuming an exponential distribution for the
point precipitation, and gamma distribution for the soil moisture content, Entekhabi
and Eagleson (1989) derived explicit expressions for surface runoff and evapotran-
spiration, and evaluated the influence of the spatial heterogeneity of precipitation
and soil moisture content on the grid-scale surface runoff and evapotranspiration.
Their analysis assumed mutually independent statistical distribution for soil mois-
ture and precipitation. For short time steps generally used in atmospheric model
integration, spatial patterns of precipitation and soil moisture are likely to be high-
ly correlated (Schaake, 1994). Jackson and Schmugge (1989) also noted that for
large area studies rainfall driven soil moisture variations play an important role
in the estimation of surface flux. Thus, we need to include interactions between
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atmospheric processes and land-surface types within a grid. Equation (4) is an
example of such a general joint density function. The lack of knowledge of the
joint parameter density function of a map, however, makes practical use of Equation
(4) difficult. Nonetheless, Equation (4) may be used to elucidate some properties
of a scale invariant map.

Let the density function for the ith parameter be fi(Pi), then the grid-scale value
of this parameter, which is the grid average of this parameter, will be

Pi =

Z
Pifi(Pi) dPi: (5)

Let fP1; P2; : : : ; Png be the grid-scale parameter set. The traditional approach
assumes that the point map is valid at the grid scale; then, the lumped output over
a grid can be estimated as

�G = map(P1; P2; : : : ; Pn): (6)

If the map is scale invariant, Equations (4) and (6) will lead to the same grid-scale
output. There are at least two conditions under which a scale invariant assumption
will be appropriate. First, if the parameters are homogeneous over the grid, then
the map is scale invariant; second, if the map is a linear combination of inputs and
parameters, then the map is scale invariant.

These two conditions are fairly straightforward to understand, although they
are perhaps the most difficult conditions to satisfy for the naturally occurring
surface and typical land surface parameterizations. Recent research on the scaling
properties of land surface processes recognizes that the nonlinearity of land surface
parameterizations might lead to the difference between the aggregated output from
a distributed map and the output from a lumped map (Sellers et al., 1992; Hall et
al., 1992; Wood and Lakshmi, 1993; Li and Avissar, 1994).

For the land surface in a mesoscale or GCM grid, either of these two conditions
will be difficult to satisfy. Thus, theoretically, it may be difficult to develop a simple
a scale invariant map for scaling up in the land surface parameterizations. However,
if the error is very small between the aggregated output from a distributed map
and the output from a lumped map, a quasi-scale-invariant relationship may still
be feasible. Such a quasi-scale-invariant map would be very useful for land surface
modelling, since the surface fluxes can be estimated by using lumped models and
the computational burden and memory storage greatly reduced. Let us divide a
GCM grid into m equal size subgrids and let fP1; P2; : : : ; Pngk be the parameter
set for a map at subgrid k, and fP1; P2; : : : ; Png be the average parameter set for
that map over the grid. Neglecting 3rd and higher order terms, one can estimate the
output at subgrid k using small perturbation theory, as

map(fP1; P2; : : : ; Pngk) � map(P1; P2; : : : ; Pn)
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+

�
(P1 � P1)k

@

@P1
+ (P2 � P2)k

@

@P2
+ � � �+ (Pn � Pn)k

@

@Pn

�

�map(P1; P2; : : : ; Pn)

+
1
2
�

�
(P1 � P1)k

@

@P1
+ (P2 � P2)k

@

@P2
+ � � � + (Pn � Pn)k

@

@Pn

�

�map(P1; P2; : : : ; Pn): (7)

Then the aggregated output over the grid from a distributed map is

Gd =
1
m

mX
k=1

map(fP1; P2; : : : ; Pngk)

� map(P1; P2; : : : ; Pn)

+
1
m

mX
k=1

1
2
�

�
(P1 � P1)k

@

@P1
+ (P2 � P2)k

@

@P2
+ � � �+ (Pn � Pn)k

@

@Pn

�2

�map(P1; P2; : : : ; Pn): (8)

The lumped output over the grid is

�G = map(P1; P2; : : : ; Pn): (9)

The difference between aggregated output from a distributed map and lumped
output is

Gd �
�G �

1
m

mX
k=1

1
2
�

�
(P1 � P1)k

@

@P1
+ (P2 � P2)k

@

@P2

+ � � �+ (Pn � Pn)k
@

@Pn

�2

map(P1; P2; : : : ; Pn): (10)

Expanding (10), we have

Gd �
�G �

1
2

nX
i=1

@2

@P 2
i

map(P1; P2; : : : ; Pn) �
1
m

mX
k=1

(Pi � Pi)
2
k

+
1
2

nX
i=1
j=1
n6=j

@2

@Pi @Pj
map(P1; P2; : : : ; Pn)

�

1
m

mX
k=1

(Pi � Pi)k(Pj � Pj)k: (11)
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Two required conditions for scale invariance discussed before are still valid for
Equation (11). If the parameters are homogeneous, then Pi � Pi is zero, thus
the scale invariance holds. If the map is linear, the second-order derivatives of
the map will be zero, and for this linear map, the scale invariance holds. If the
map is weakly nonlinear, or the parameters are mildly inhomogeneous over the
grid, a quasi-scale-invariant relationship may still be found because, under such
conditions, the right hand side of Equation (11) will be small. For nonlinear maps,
the correlation between parameters might be important in determining the effects
of spatial heterogeneity (the second term in (11)). Based on current observational
ability and measurement accuracy, we may consider that, if the error due to using
a lumped model is less than 10%, the estimation error is acceptable.

If the map is not scale invariant, Equation (11) could still provide a method to
parameterize the grid-scale output from a map. In order to estimate the grid-scale
output, the lumped output should be modified by the map parameter heterogeneity.
For a given map, we can obtain derivatives of the map with respect to its parameters.
If we are able to parameterize the variances and covariances of parameters by
their corresponding grid-scale values, then Equation (11) can be used to estimate
the grid-scale map response by taking into account the spatial heterogeneity of
parameters.

4. Applications

Equation (11) provides a systematic and general approach to examining scale-
invariant properties of different maps. Here, we demonstrate the utility and effec-
tiveness of Equation (11) to determine scale invariant characteristics of several
commonly used land surface parameterizations.

4.1. SURFACE INFRARED RADIATION

A widely used model, based on the Stefan–Boltzmann law and modified for a
non-black body, for surface infrared radiation, I , is written as follows

I = "e�T
4
g ; (12)

where "e is surface emissivity, � is the Stefan–Boltzmann constant and Tg is the
canopy/soil combined temperature. For a given surface type, the surface emissiv-
ity depends primarily on moisture content. Soil moisture content and canopy/soil
combined temperature depend on a number of land surface and atmospheric para-
meters and variables that exhibit natural spatial heterogeneity. Thus, the spatial
distribution of surface emissivity and canopy/soil combined temperature will be
heterogeneous. The surface infrared radiation map is a product of two hetero-
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geneous model parameters as given in (12). Substituting this map into (11), we
get

Id � �I = 6"e�Tg
2 1
m

mX
k=1

[(Tg)k � Tg]
2

+4�Tg
3 1
m

mX
k=1

[("e)k � "e] � [(Tg)k � Tg]: (13)

The relative difference can be expressed as

Id � �I
�I

=
6
m

mX
k=1

"
(Tg)k � Tg

Tg

#2

+
4
m

mX
k=1

�
("e)k � "e

"e

�
�

"
(Tg)k � Tg

Tg

#
: (14)

Compared to mean values of canopy/soil combined temperature and surface emis-
sivity, the difference produced by the heterogeneity will be very small. For example,
the numerator of the first term on the right hand side will be on the order of a few
kelvins whereas the denominator will be in excess of 280 K. Thus the difference
between the aggregated output from a distributed surface infrared radiation para-
meterization and the lumped output from the lumped infrared radiation parameter-
ization will be small. This suggests that surface infrared radiation parameterization
may be quasi-scale-invariant.

4.2. REFLECTED SOLAR RADIATION

The reflected solar radiation can be expressed as

R = �S
; (15)

where� is surface albedo andS
 is downwelling solar radiation at the land surface.
The solar radiation at the surface will be affected by conditions in the atmosphere.
For land surface modelling, however, it is generally assumed that the solar radiation
at the surface is known and homogeneous over the grid. Thus, the map of reflected
solar radiation is linear to the only parameter – surface albedo. From Equation
(11), the difference between the aggregated output from a distributed reflected solar
radiation parameterization and the lumped output from the lumped reflected solar
radiation parameterization is zero. Consequently, we can argue that the reflected
solar radiation parameterization is scale invariant. Similar results are also reported
from the analysis of numerical experiments (e.g., Bonan et al., 1993).

We must emphasize here that Equation (15) is perhaps one of the simplest
parameterizations for reflected solar radiation and it does not include many com-
plicating factors, for example, the nonlinearity of albedo with topography and
spectral dependence of albedo. However, over a large area of a GCM grid, it can be
argued that the reflected radiation should be more or less linear, so that the grid-cell
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average reflected solar radiation will be approximately equal to the average of the
subgrid aggregated output. Within a mountainous area, however, depending on the
albedo and details of the topography (i.e., slope and aspect effects), there can be
a significant difference, due to the different effects of topography at the subgrid
versus the average effects of the topography at the grid level. Another interesting
example may be seen in the marginal ice zone where the parameterization of the
reflected solar radiation is complicated by the high reflectance of snow (up to
90%) and low albedo of water, and the reflection by clouds of upward (reflected)
solar radiation. Thus, the interaction of the cloud and the surface might lead to the
difference between the lumped and distributed model estimation of the grid level
reflected solar radiation (Stossel and Claussen, 1993; and Grotzner et al., 1996). In
such cases, Equation (15) needs to be refined to include the dependence of albedo
on topography, or snow, and then Equation (11) should be used to quantify the dif-
ference between the aggregated output from a distributed reflected solar radiation
parameterization and the lumped output from a grid-level input.

To illustrate the adequacy of our proposed method, let us consider another
simple case. Let us assume that albedo varies with cloud cover, and solar radiation
at the reference level is reduced by cloud over a grid block. Let cf be the fraction
of cloud cover over a grid block, then the parameterization of the reflected solar
radiation can be expressed as

R = �(cf )S
(cf ): (16)

Then from (11), the difference between the distributed and lumped approaches can
be expressed as

Rd �
�R =

"
S
(cf )

@2�(cf )

@c2
f

+ 2
@�(cf )

@cf

@S
(cf )

@cf
+ �(cf )

@2S
(cf )

@c2
f

#

�

1
m

mX
k=1

[(cf )k � cf ]
2: (17)

The difference between the distributed and lumped reflected solar radiation, if we
use the map in Equation (16), will usually not be zero but will be a function of
the cloud cover, solar radiation, and albedo. This result is quite different from the
earlier result inferred from using a map in Equation (15). Analysis of these two maps
would demonstrate that a different parameterization, and the assumptions related to
the parameterization, could lead to different results for the same physical process.
We must note, however, that our proposed approach is capable of distinguishing
between the effects of different parameterizations for the same process.
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4.3. SENSIBLE HEAT FLUX

The most often used parameterization of sensible heat flux from the surface is the
bulk transfer formula

H = �CpChU(Tg � Ta); (18)

where � is air density, Cp is specific heat of air at constant pressure, Ch is the
transfer coefficient, U is wind velocity, Tg is canopy/soil combined temperature
and Ta is air temperature. Here, �, U and Ta are known at the reference level. For
a mesoscale or GCM grid, air density, wind velocity and air temperature at the first
model level may be assumed to be homogeneous in space. This assumption may be
justified by viewing the atmosphere as a spatial integrator, and is supported by the
field experiment data analysis (Mahrt and Sun, 1995) and blending height concept
(Wieringa, 1986; Mason, 1988; Claussen, 1995a, b). Mahrt and Sun (1995) found
that the bulk aerodynamic formulation, based on spatially constant atmospheric
variables and spatially varying surface conditions, closely approximates the area
averaged heat flux. An implication of this result is that current modelling philosophy
of using the bulk aerodynamic formulation with heterogeneous surface conditions
and homogeneous first model level conditions over a model grid is an acceptable
practice. Usually the air flow close to the surface is in equilibrium with the surface
conditions. Consequently, due to the surface heterogeneity over some horizontal
scales, the air flow over the heterogeneous surface and below the blending height
does depend on the location of the surface. Thus, by taking the first model level
height to be at least the blending height, we can assume the atmospheric conditions
at the first model level height to be homogeneous in a grid block. Various values of
blending height are used in the literature from 5 to 100 m (Mason, 1988; Claussen,
1991; von Salzen et al., 1996). However, Hipps et al. (1994) found that changes
in the computed fluxes were less than 10% using either a blending height of 20 or
150 m, while von Salzen et al. (1996) found that the precise value of the blending
height is of lesser importance in comparison to the parameterization of the exchange
coefficient.

Based on the above discussion, one may argue that primarily, two parameters,Ch

and Tg, in the sensible heat flux [map(Ch, Tg)] parameterization are influenced by
surface heterogeneity. Since the sensible heat flux is linear inChandTg respectively,
the first term in Equation (11) is zero. The difference between the aggregated output
from a distributed sensible heat flux parameterization and the lumped output from
the lumped sensible heat flux parameterization is as follows

Hd �
�H = �CpU

1
m

mX
k=1

[(Ch)k � Ch] � [(Tg)k � Tg] (19)
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and the relative difference is:

Hd �
�H

�H
=

1
m

mX
k=1

[(Ch)k � Ch] � [(Tg)k � Tg]

Ch[Tg � Ta]
: (20)

In the above discussion, we have replaced the air temperature at the roughness
height for heat with the surface canopy/soil combined temperature. Based on the
similarity theory, the surface sensible flux is related to the air conditions at the
roughness height for heat and the atmospheric conditions at the reference height.
The difficulty with this approach is that the air temperature at the roughness height
cannot be measured directly. For this reason, as Stewart et al. (1994), and Sun and
Mahrt (1995) have argued, the temperature at the roughness height is replaced by
the easily measured and modelled surface radiative temperature. This approach is
widely used in the various land surface models and is also used in our analysis
(Equation (18)). This substitution essentially implies that the transfer coefficient
is now related to the difference between the surface temperature and the refer-
ence level temperature. As we argued above, the reference level temperature may
be assumed to be homogeneous. A similar assumption was also made by Garratt
and Prata (1996). An implication of this commonly used assumption and practice
in numerical modelling of land surface processes is that the transfer coefficient
becomes a function of the surface temperature. We note that such a practice of
replacing roughness level temperature with surface radiative temperature would
lead to some error. The formulation of Louis (1979), with modifications in Louis et
al. (1982), states that the transfer coefficient is positively correlated with the air tem-
perature and the roughness height for temperature while assuming the atmospheric
temperature at the reference level is constant (Mahrt and Ek, 1984). Based on field
experiment data analysis, Sun and Mahrt (1995) found that the exchange coefficient
and the radiative surface temperature are positively correlated. Thus, if the hetero-
geneity of the heat transfer coefficient and the canopy/soil combined temperature
is large, the difference between the aggregated output from a distributed sensible
heat flux parameterization and the lumped output from a lumped sensible heat flux
parameterization will be significant. In fact, the lumped sensible heat parameter-
ization might significantly underestimate the grid-level sensible heat flux (Mahrt,
1987; Bonan et al., 1993; Grotzner et al., 1996). In summary, for a heterogeneous
land surface, a positive correlation between surface temperature and heat transfer
coefficient would introduce errors in the scaling up of sensible heat flux.

4.4. LATENT HEAT FLUX

The commonly used latent heat flux parameterization is based on the bulk transfer
scheme

E = �LvCqU(qg � qa); (21)
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where Lv is latent heat of evaporation, Cq is transfer coefficient for latent heat, qg
is surface soil specific humidity, qa is the reference level specific humidity. Again,
�, U , and qa are known at the reference level, and are assumed to be homogeneous.
Based on the discussion for sensible heat transfer coefficient above, we argue that
Cq may also be related to surface temperature. We also note here that in most
numerical modelling experiments, Cq and Ch are assumed to be equal. The latent
heat flux map is similar to the sensible heat flux map and may be assumed to be
affected primarily by two heterogeneous parameters. Similar to (19) and (20), the
absolute and relative differences between the aggregated output from a distributed
latent heat flux parameterization and the lumped output from the lumped latent
heat flux parameterization are

Ed �
�E = �LvU

1
m

mX
k=1

[(Cq)k � Cq] � [(qg)k � qg]; (22)

Ed �
�E

�E
=

1
m

mX
k=1

[(Cq)k �Cq] � [(qg)k � qg]

Cq[qg � qa]
: (23)

In Equation (23), the relative error in the estimation of distributed and lumped latent
heat flux will be dictated by the correlation between the transfer coefficient and sur-
face specific humidity. There are two competing factors that control the magnitude
of the surface specific humidity: surface temperature and wetness of soil. Higher
surface temperature and wetter soil corresponds to larger surface specific humidity.
However, high soil moisture usually corresponds to low surface temperature and
low surface temperature usually leads to smaller transfer coefficient (by virtue of
their usual occurrence in less unstable, or stable, conditions). Consequently, the
correlation between heat transfer coefficient and surface specific humidity is unre-
solved. In fact, reported numerical results and analysis of observed data regarding
the scaling of latent heat flux are also mixed. We speculate that the scaling of latent
heat flux is dependent on the form of the parameterizations, as well as the state of the
land and atmosphere system. For example, Wood (1994) reported that the lumped
model can predict latent heat flux fairly well when the atmospheric demand is low
but it fails to accurately predict the latent heat flux when the soil and vegetation
conditions limit the actual evapotranspiration. This nonlinear dependence of latent
heat flux upon the state of the land-atmosphere system complicates the assessment
of scaling properties for latent heat flux parameterization. To resolve this issue, we
need to first ascertain the nature of the correlation between heat transfer coefficient
and surface specific humidity. However, one can make some simple arguments
regarding the scaling properties of latent heat flux if we assume that the input
solar radiation is constant, and the ground heat flux is small. Then, conservation
of energy would dictate that the lumped latent heat flux parameterization should
overestimate the grid-scale latent heat flux. In previous sections we have shown
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that the infrared radiation from the land surface and reflected solar radiation are
at least quasi-scale-invariant, and the lumped sensible heat flux parameterization
underestimates the grid-scale sensible heat flux. In fact, results of Dolman (1992)
and Bonan et al. (1993) corroborate this inference regarding the overestimation
of grid-scale latent heat flux. This implies that the heat transfer coefficient and
surface specific humidity could be negatively correlated. Clearly there are several
untested assumptions here that need to be validated using observed data before
more definitive conclusions can be drawn about the scaling properties of the latent
heat flux.

4.5. COMPARISON WITH RESULTS OF RECENT EXPERIMENTS

There is a considerable debate over the importance of surface heterogeneity on
the estimation of the surface fluxes. Several recent studies reported results of
numerical experiments on the issues of spatial scaling of surface fluxes (Claussen,
1989; Claussen, 1990; Garratt et al., 1990; Pinty, 1991; Blyth et al., 1993; Bonan et
al., 1993; Wood and Lakshmi, 1993; Li and Avissar, 1994; Grotzner et al., 1996).
Claussen (1990), Pinty (1991), Blyth et al. (1993), Bonan et al. (1993), Li and
Avissar (1994) and Grotzner et al. (1996) have shown that surface heterogeneity
is important and should be taken into account in modelling studies, while Garratt
et al. (1990) and Wood and Lakshmi (1993) found that the surface heterogeneity
might not be significant for some purposes.

In an attempt to include the effects of subgrid variability into numerical models,
Garratt et al. (1990) introduced random (in space) variations in roughness length
and random (in space and time) surface perturbations of temperature and friction
velocity into a mesoscale model and reported a measurable, but barely significant,
response in the simulated flow dynamics of the lower atmosphere. Wood and
Lakshmi (1993) also found that the latent heat flux and normalized difference
vegetation index are not sensitive to surface heterogeneity.

On the other hand, Claussen (1989) found that micro- and mesoscale turbulent
flux divergences are of the same orders of magnitude in the case of shallow grid
boxes. Claussen (1990) found that the dispersion of scalar admixtures is particularly
sensitive to variations of surface (or stomatal) resistance in a neutrally stratified,
horizontally inhomogeneous atmospheric boundary layer. He has also shown that
the grid-averaged transfer coefficient (of momentum and of scalar admixtures)
generally overestimates the effective transfer coefficient due to the subgrid-scale
correlation terms. Pinty (1991) has shown that the areally averaged fluxes are
sensitive to specific mesoscale features within the domain based on a numerical
simulation of HAPEX-MOBILHY experiment. Blyth et al. (1993) demonstrated
that if part of the surface is wet, large errors in mean latent and sensible heat fluxes
can result from using simple averages of the parameters. Bonan et al. (1993) and
Li and Avissar (1994) found that the latent heat flux is sensitive to the variability of
land characteristics. Grotzner et al. (1996) described a study of the impact of sub-
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grid scale sea-ice inhomogeneities on the performance of the atmospheric general
circulation model ECHAM3. They found that the sensible heat flux in the lumped
model is always smaller than in a distributed model.

While the modelling results are quite mixed in regard to the importance of the
surface heterogeneity, the analysis of field experiments has shown that this het-
erogeneity may not be as important as suggested by the numerical model results.
Esbensen et al. (1981) have shown that monthly averaged wind speeds, tempera-
tures and humidities can be used to estimate the monthly averaged sensible and
latent heat fluxes from the bulk aerodynamic relations to within a relative error of
about 10%, and the estimates of monthly averaged wind stress under the assump-
tion of neutral stability are within about 5% of the monthly averaged non-neutral
values. The analysis of the FIFE data set shows that the land-atmospheric mod-
els are scaleable (Sellers et al., 1992; Hall et al., 1992). Garratt and Prata (1996)
have shown that there is a small error incurred when the average (temporal or
spatial) of the upwelling longwave flux is computed using the mean of the surface-
temperature measurements rather than using the mean of the fluxes corresponding
to each surface-temperature measurement. Their results are based on the Hay site
measurements in Australia and simple analytical reasoning. Below, we attempt
to explain some of these observational and modelling results using our proposed
framework.

Bonan et al. (1993) and Li and Avissar (1994) have shown numerically that
infrared radiation from the surface is the least sensitive of a number of processes,
to the land surface heterogeneity. This result is consistent with our analysis in
Section 4.1. The main reason is that the deviations due to heterogeneity of surface
emissivity and surface temperature from the means is much smaller than these
mean values. For example, the soil emissivity can vary from 0.90 for wet soil
to 0.98 for dry soil (Oke, 1978). Assuming the surface temperature variation is
no more than 10 K over a grid, then the error due to using the lumped model is
about 2% (Equation (14)). In Section 3, we have shown that homogeneous surface
parameters of a map can lead to a scale invariant map. Thus relatively homogeneous
surface temperature and surface emissivity fields can lead to a quasi-scale invariant
infrared radiation parameterization.

The result from Bonan et al. (1993) on the reflected solar radiation is consistent
with our analysis in Section 4.2. Since for larger areas the reflected solar radiation
may be assumed to be linearly dependent on only one surface parameter (albedo),
this linearity leads to a scale invariant reflected solar radiation parameterization.

The influence of surface heterogeneity on the sensible heat flux scaling has been
found to be important by Bonan et al. (1993) and Li and Avissar (1994). This is also
consistent with our analysis in Section 4.3. The interaction between the surface
temperature and transfer coefficient explains the effect of surface heterogeneity on
the scaling up of sensible heat flux.

Reported results on the scaling of latent heat flux are mixed. Wood and Lakshmi
(1993) found that the latent heat flux is scaleable, while Bonan et al. (1993) and Li
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and Avissar (1994) found that the surface heterogeneity has a significant influence
on the estimation of latent heat flux. Recently, Wood (1994) argued that the scaling
of latent heat flux depends on the state of the system. Two land surface parameters
(leaf area index LAI and soil wetness WSOIL) and an assumed spatial distribution
(normal distribution) are common in the first three studies. Comparison of the
coefficient of variation (c.v.) for a normal distribution does not indicate significant
differences among these three studies. Wood and Lakshmi (1993) used c.v. = 0.25
for both LAI and WSOIL. Bonan et al. (1993) used 0.31 (1.8/5.9) for LAI and
0.17 (0.11/0.65) for WSOIL. Li and Avissar (1994) used c.v. = 0.25 (0.125/0.5)
and 0.60 (0.3/0.5) for both LAI and WSOIL. This suggests that, to account for
the effects of land surface heterogeneity, we need to consider other characteristics
(e.g., higher order moments) of the probability density function. In fact, both Bonan
et al. (1993) and Li and Avissar (1994) found that a skewed distribution resulted
in much larger differences between the aggregated flux and the lumped flux. In
summary, the nature of spatial scaling of latent heat flux in the numerical exercises
appears to be an unresolved problem, since there are not enough data to support an
assumed specific distribution for any land surface parameter. In addition, there are
complications related to the state dependent nature of latent heat flux.

Our analysis on the the emitted infrared radiation from the surface (Section
4.1) and on the reflected solar radiation from the surface (Section 4.2) is consistent
with the results from the analysis of the FIFE data by Sellers et al. (1992) and
Hall et al. (1992). In contrast to our findings, Sellers et al. (1992) and Hall et al.
(1992) reported that the sensible and latent heat fluxes are scaleable for FIFE. This
difference between the findings from the analysis of the FIFE experiment data and
our results may be explained by the relative homogeneity of the FIFE experimental
site. This site is a 15� 15 km area of tall prairie grass in central Kansas with a terrain
of gently rolling hills (Sellers et al., 1992). In comparison with a typical GCM grid
block (300 � 300 km), the FIFE experiment site is much more homogeneous. As
we have shown in Section 3, relative homogeneity of parameters can lead to scale
invariance, irrespective of the details of the parameterization. This may explain the
scaling results derived from the analysis of FIFE data.

5. Concluding Remarks

An analytical approach for evaluating scale invariant properties of land surface
parameterizations is presented. At least two conditions under which scale invariance
holds are derived from this analytical approach. It is shown that a land surface
parameterization can be scale invariant if the land surface is homogeneous, or the
land surface parameterization is linear. For commonly encountered heterogeneous
land surfaces and nonlinear land surface parameterizations, these two conditions
would be difficult to meet. Consequently, an exact scale invariant condition would
be difficult to satisfy for land surface modelling.
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Preliminary applications show that this analytical approach can support results
of several field and numerical experiments related to effects of land surface het-
erogeneity on the surface fluxes. The emitted infrared radiation from the surface
and reflected solar radiation parameterizations are found to be relatively insensi-
tive to land surface heterogeneity. Sensible and latent heat fluxes are shown to be
sensitive to the land surface heterogeneity because of the correlation of the trans-
fer coefficient with the surface temperature and surface humidity. These results
should be further validated using field data at different spatial scales. Assumptions
related to different parameterizations for the same process could potentially lead
to different conclusions regarding the influence of spatial heterogeneity. Our pro-
posed analytical approach, however, is capable of identifying the role of different
parameterizations in estimating the influence of spatial heterogeneity.

Our proposed approach is simple, but it promises to provide essentially similar
results obtained from most involved numerical experiments and analyses of exten-
sive large-scale field experimental data. We must emphasize, however, that to keep
the analytical approach tractable, we have made at least two major assumptions,
(i) neglect of higher order terms that translates to neglect of higher order statistical
moments, and (ii) ignoring the contributions of interactions at the subgrid level
associated with lateral advection. A primary motivation for these assumptions is to
ensure the proposed approach is tractable so that valuable insight may be gained
by using commonly encountered, but simple, land surface parameterizations.

To extend the analytical approach, it will be necessary to include third- and
higher-order terms in Equation (8). For example, to account for the effects of
skewness in the probability density function of a parameter, we would need to
include the third-order terms in Equation (8). With our current state of knowledge
about land surface parameters and their interdependence, we feel more empiricism
needs to be introduced if we are to include higher-order terms.

Another caveat we must acknowledge here is that we have used relatively sim-
ple application examples from the literature to demonstrate the adequacy of our
proposed approach. In cases where these application examples are not appropriate,
we need to use different maps to account for the effects of land surface hetero-
geneity. For example, our latent heat flux parameterization does not include effects
of vegetation and heterogeneous distributions of soil moisture due to topography.
With significant heterogeneity in topography, there can be appreciable redistrib-
ution of soil moisture such that the valley bottoms would evaporate at nearly the
potential rate, whereas evaporation would be very low elsewhere. In such cases, a
more detailed latent heat flux map must be used to characterize the effects of het-
erogeneity. Nevertheless, our proposed approach would be applicable to estimating
aggregation errors by such detailed maps as well.

The proposed approach can also provide a systematic methodology to para-
meterize the effects of land surface heterogeneity and to design remote sensing
algorithms. For the estimation of the grid-level response, the lumped response
should be modified by the variance term and covariance term. Thus, a new rep-
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resentation of land surface heterogeneity may be achieved by parameterizing the
variance and covariance terms with grid-scale mean values of parameters. Results
from a land surface heterogeneity parameterization using the proposed approach,
and its application in remote sensing algorithm design, will be reported in the
future.
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